The Triumph of Clinical Integration

Peter C. Laussen MB.BS., FANZCA, FCICM
Chief, Department Critical Care Medicine
David and Stacey Chair in Pediatric Critical Care
The Hospital for Sick Children, Toronto
Professor of Anesthesia, University of Toronto
Disclosures

- Co-developer: *Tracking, Trajectory and Trigger* tool (T^3)
- Medical advisor: *Etiometry LLC, Boston MA*
- Co-Developer: www.RiskyBusiness.events
Wilma Rudolph; 3 gold medals, Rome Olympics 1960

“The triumph can’t be had without the struggle”
Humans, Technology & Data Science
Clinical Integration - Precision Critical Care: Understanding the problems and how we work.

Practice variability: Humans & systems

Admission
- Disease
- Procedure
- Acuity Index

Guidelines / Protocols
Early warning systems
Quality Metrics

Sources of Truth

Environment
Teams
Work flow

Discharge
- Mortality
- Morbidity
- Quality of Life

Monitoring devices

EHR

Patient & Unit VIEW
Decision making is a Dynamic process:

Quadrants for Adapting to Uncertainty™

- **Adaptive Behavior**
 - **Legal**: Low uncertainty / complexity
 - **Illegal-Normal**: Little adaption
 - **Resilience**: Shift clinical behavior
 - **Inappropriate Rigidity**: High uncertainty / complexity

Patricia Trbovich PhD
HumanEra,
Centre for Global eHealth,
University of Toronto
The diagram illustrates the relationship between adaptive behavior, situation uncertainty, and outcomes. It divides the space into four quadrants:

- **Adaptive Behavior** vs. **Situation Uncertainty**:
 - **High Adaptive Behavior, High Uncertainty**: Resilience
 - **High Adaptive Behavior, Low Uncertainty**: Legal
 - **Low Adaptive Behavior, High Uncertainty**: Inappropriate Rigidity
 - **Low Adaptive Behavior, Low Uncertainty**: Illegal-Normal

On the right side of the diagram, there is a graph showing the volume of outcomes with higher uncertainty or complexity. It indicates the need for predictive practices, adaptation, and understanding deviation.
Know your “space”: Dynamic, changes constantly
Precision Critical Care: Understanding the problems and how we work

Sources of Truth
- Environment
- Teams
- Work flow

Physiologic variability
- Risk Adjuster
- Disease
- Procedure
- Acuity Index

Education & AI
- Guidelines / Protocols
- Early warning systems
- Quality Metrics

Admission
- Monitoring devices
- Patient & Unit VIEW

Discharge
- Outcomes
- Benchmarks
- Mortality
- Morbidity
- Quality of Life

EHR
New tools for learning and transferring information.....

The Stanford Virtual Heart – Revolutionizing education on congenital heart defects
What has been the clinical impact?

Estimated <0.1% in routine clinical use

Business Intelligence: Improve operational & safety-related decision support
• Monitoring of key quality & performance indicators

Precise population-based care:
• Data-driven clinical care and management throughout the patient journey

Individualized patient care:
• Diagnosis, trajectory and prognosis, & decision support
Big data in healthcare

Data Commons: facilitate access and organization of various structured and unstructured data and enable real-time algorithms and analysis.
All patients (ownership) All data Permanently

Clinical use Research Training / labelling

Modelling Iterative

Visualization

Information Trajectory

Understanding New knowledge

Interactive Scalable Platform

Usable: Augment decision making
Data Flow

- CCCU / PICU (42 Beds)
 - 5 second Data
 - Waveform / 1 Second Data
 - Ventilator / other data

- Server: Philips Gateway Server
 - Role: Hosts HL7 5s device metric data feed
 - Serial Connection to Philips Monitors

- Server: HSC EMR Servers
 - Role: Provides HL7 feed of patient lab information
 - Provides ADT database access

- Server: T3 Production
 - Role: Short-Term Data Storage
 - Web Interface Hosting

- Server: T3 Analytics
 - Role: Long-Term Data Storage
 - Analytics Engine

- Server: T3 Staging
 - Role: Testing / Evaluation of New T3 Software

- Server: VINES Server
 - Role: Device bridge and data aggregator for waveform and 1 second metric data

- Server: Laboratory Information System
 - Role: T3 User Interface Web-Browser
 - T3 Production Software
 - Test T3 User Interface Web-Browser
 - Test T3 Production Software

- Server: AtriumDB
 - Role: Permanent storage of device metric and waveform storage
 - Analytics Engine
 - Programming Interface
 - Web User Interface Hosting

- Server: AtriumDB Analytics Engine

- Server: AtriumDB Web User Interface

- Server: VINES
 - Role: Physiological Database

- Server: HPC4Health
 - Role: Large Scale Compute Capability
 - Secure Access to Data for External Collaborators

- Server: HPC4Health
 - Role: High Speed Private Physical Connection

Lower frequency data (5 second)

- Server: HSC EMR Servers
 - Role: Hosts HL7 5s device metric data feed

- Server: ADT via Oracle Database
 - Role: Provides ADT database access

- Server: T3 Analytics Server
 - Role: Infusion / other data feeds

- Server: T3 Risk Analytics Software

- Server: T3 Production Server
 - Role: T3 Production Software

- Server: T3 Staging Server
 - Role: Testing / Evaluation of New T3 Software

- Server: HPC4Health
 - Role: Large Scale Compute Capability
 - Secure Access to Data for External Collaborators

High frequency data
Volume of Water
~200,000 ft³/sec

Volume of Physiologic Data
~200,000 bytes/sec

Data Management System

- Application interface(s)
- Time Series Compression: Adaptive compression and file index
- Signal Quality Index: Measured coefficient of variance
- Signal generation & processing

Efficient storage and retrieval; Analysis ready

Predicting a PHYSIOLOGIC STATE

HII (Hemodynamic Instability Index)
likelihood that intervention is needed based on hemodynamic instability defined as requiring a fluid bolus or initiation vasoactive drugs. Range: 0 and 1.

IDO2 (Inadequate Oxygen Delivery Index)
likelihood that the patient is experiencing inadequate oxygen delivery, defined as mixed venous oxygen saturation (SvO2) less than 40%. Range: 0 and 100.
Prediction of EVENTS

Sepsis

Cardiac Arrest
Signal processing

"Atrial Fibrillation Classification Using Step-By-Step Machine Learning".
Goodfellow, Sebastian; Goodwin, Andrew; Greer, Robert; Laussen, Peter; Mazwi, Mjaye; Eytan, Danny. Biomedical Physics & Engineering Express.
More subtle phenomena......

• “Hidden variables”- things not easily measured directly at bedside (variability measures, SVR, oxygenation parameters, autoregulation)
We need......

• Multi-modal and multi-site Physiologic Databank
• Data management platform:
 - 4R’s: relational, reliable, robust and retrievable (beyond the 4 V’s)
• Linkages established with categorical registries and other sources of data
• APIs written => Distributive computing ready
• Governance structure, shared, open source (democratized)
• Knowledge translation and implementation

Pediatric cardiac critical care well placed to realize this
Expanded teams and expertise

Mjaye Mazwi
MSc
Lead, Computational Physiology and Translational Engineering

Andrew Goodwin
B.Eng.
Senior data analyst
Environmental engineer, Data architect

Anna Goldenberg
PhD
Senior Scientist
Research & Vector Institutes

Patricia Trbovich
PhD
HumanEra & IBBME program
University of Toronto

Danny Eyun
MD, Ph.D.
Senior Research Associate
Neural networks & machine learning

Azadeh Assadi
HBSc, BScN, RN(BC), MN-NP(Pediatrics)
Computer programming

Anusha Jegatheeswaraen
MD, PhD
CV surgeon

Sana Tonekaboni
BSc PhD (c)

Robert Greer
B.Eng, MSc
Data Analyst
Systems & Architecture

Sebastian Goodfellow
B. Eng, PhD
Senior Research Associate
Signal processing & machine learning

Asad Habib
B.Eng, PhD
Senior project manager

Michael Brudno
PhD
Senior Scientist
Genetics and Genome Biology